

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

JAH Initial Sp	pacecraft Design Decision
Design Approach or Aspect	Principal Options or Key Issues
Spacecraft Weight	Must allow for spacecraft busy weight and payload weight
Spacecraft Power	Must meet power requirements of payload and bus
Spacecraft Size	Is there an item such as a payload antenna or optical system that dominates the spacecraft's physical size? Can the spacecraft be folded to fit within the booster diameter? Spacecraft size can be estimated from weight and power requirements
Attitude Control Approach	Options include no control, spin stabilization, 3- axis control: selection of sensors and control torquers. Key issues are number of items to be controlled, accuracy, and amount of scanning or slewing required.
	19

UAH Initial Sp	bacecraft Design Decisions
Design Approach or Aspect	Principal Ontions or Key Issues
Solar Array Approach	Options include planar, cylindrical, and omnidirectional arrays either body mounted or offset
Kick Stage Use	Use of a kick stage can raise injected weight. Options include solid and liquid stages
Propulsion Approach	Is metered propulsion required? Options include no propulsion, compressed gas, liquid monopropellant or bipropellant
	20

Configuration Driver	Effect	Rule of Thumb
Payload Weight	Spacecraft dry weight	Payload weight is between 17% and 50% of spacecraft dry weight. Average is 30%
Payload Size and Shape	Spacecraft size	Spacecraft dimensions must accommodate payload dimensions
Payload Power	Spacecraft power	Spacecraft power is equal to payload power plus an allowance for the spacecraft bus and battery recharging
Spacecraft Weight	Spacecraft size	Spacecraft density will be between 20 kg/m ³ and 172 kg/m ³ . Average is 79 kg/m ³ .

UAH Spacecraft Configuration Drivers							
Configuration Driver	Effect	Rule of Thumb					
Spacecraft Power	Solar array area	Solar array will produce approximately 100 w/m ² of projected area					
Solar Array Area	Solar array type	If required solar array area is larger than area available on equipment compartment, then external panels are required					
Booster Diameter	Spacecraft diameter	Spacecraft diameter is generally less than the booster diameter					
Pointing Requirements	Spacecraft body orientation and number of articulated joints	Two axes of control are required for each article to be pointed. Attitude control of the spacecraft body provides 3 axes of control 24					

C+/		Procedure Commonte					
316	Powload Weight	Storting point	Comments				
1.	Fayloau weight	Starting point					
2.	Estimate Spacecraft Dry Weight	Multiply payload weight by between 2 and 7	Average is 3.3				
3.	Estimate Spacecraft Propellant	Prepare a bottom-up propellant budget or arbitrarily select a weight	Normal range is 0% to 25% of spacecraft dry weight				
4.	Estimate Spacecraft Volume	Divide spacecraft loaded weight by estimated density	Range of density is 20- 172 kg/m ³ , average is 79 kg/m ³				
5.	Select Equipment Compartment Shape and Dimensions	Shape and dimensions should match payload dimensions and fit within the booster diameter	In the folded configuration, spacecraft are cylindrically symmetric about the booster thrust axis. Cross-sectional shapes range from triangular to circular				

Velocity Correction and Control (ΔV for rocket equation) Attitude Control •Spinup and despin •Maneuvering while spinning •Cancelling disturbance torque •Control during ΔV thrusting •Attitude maneuvering •Limit cycling Sum of above Margin 10-25% of nominal Residual 1-2% of total	Elements	Reference
Attitude Control •Spinup and despin •Maneuvering while spinning •Cancelling disturbance torque •Control during ΔV thrusting •Attitude maneuvering •Limit cycling Nominal Propellant Sum of above Margin 10-25% of nominal Residual 1-2% of total	Velocity Correction and Control	(ΔV for rocket equation)
Nominal PropellantSum of aboveMargin10-25% of nominalResidual1-2% of total	 Attitude Control Spinup and despin Maneuvering while spinning Cancelling disturbance torque Control during ∆V thrusting Attitude maneuvering Limit cycling 	
Margin10-25% of nominalResidual1-2% of total	Nominal Propellant	Sum of above
Residual 1-2% of total	Margin	10-25% of nominal
	Desidual	1-2% of total
Total Propellant Sum of above	Residual	Sum of above

AH Ste	ps in Preparing	Power Budge
Step	What's Involved	Comments
1. Prepare Operating Power Budget	Estimate power requirements for payload and each spacecraft bus subsystem	
2. Size the battery	 Estimate power level that the battery must supply Compute discharge cycle duration, charge cycle duration, and number of charge-discharge cycles Select depth of discharge Select charge rate Computer battery recharge power 	 Generally equal to or less than operating power level Determined by orbit selection and mission duration
3. Estimate Power Degradation Over Mission Life	Compute degradation of power system from orbital environment	30% is typical for 10 years at GEO
		28

UAH Spacec	raft Total Power Required
 Communications 	S
	$P_t = 1.1568P_{PL} + 55.497$
 Meteorology 	$P_t = 602.18\ln(P_{PL}) - 2761.4$
 Planetary 	$P_t = 332.93 \ln(P_{PL}) - 1046.6$
 Other missions 	$P_t = 210 + 1.3P_{PL}$
	30

UAF	I	ŀ	AIAA	Рои	ver C	onti	ngen	ncies	
Category	1	Bid Class 2	3	1	CoDR Class 2	3	1	PDR Class 2	3
AP 0-500 W	90	40	13	75	25	12	45	20	9
BP 500-1500 W	80	35	13	65	22	12	40	15	9
CP 1500-5000 W	70	30	13	60	20	12	30	15	9
DP 5000+ W	40	25	13	35	20	11	20	15	9
									31

H	A	IAA P	ower	Cont	ingen	cies
[CDR			PRR	
Category	Class			Class		
	1	2	3	1	2	3
AP 0-500 W	20	15	7	5	5	5
BP 500-1500 W	15	10	7	5	5	5
CP 1500-5000 W	15	10	7	5	5	5
DP 5000+ W	10	7	7	5	5	5

Subsystem	Comsats	Metsats	Planetary	Other
Thermal Control	30	48	28	33
Attitude Control	28	19	20	11
Power	16	5	10	2
CDS	19	13	17	15
Communications	0	15	23	30
Propulsion	7	0	1	4
Mechanisms	0	0	1	5

JAH AIAA Recommended Mass Ma						
		Bid			CoDR	
Category		Class			Class	
	1	2	3	1	2	3
AW 0-50 kg	50	30	4	35	25	3
BW 50-500 kg	35	25	4	30	20	3
CW 500-2500 kg	30	20	2	25	15	1
DW 2500+ kg	28	18	1	22	12	0.8
						41

UAH	AIAA	Reco	mmen	ded M	lass M	largins	
		PDR			CDR		
Category	Class			Class			
	1	2	3	1	2	3	
AW 0-50 kg	25	20	2	15	12	1	
BW 50-500 kg	20	15	2	10	10	1	
CW 500-2500 kg	20	10	0.8	10	5	0.5	
DW 2500+ kg	15	10	0.6	10	5	0.5	
						42	

UAL	9	Subsy	ysten	n Mas	ss All	ocati	ion G	uide
Subsystem	Com	nsats	Met	sats	Plan	etary	Ot	her
Subsystem	with P/L	GFE P/L						
Structure	21	29	20	29	26	29	21	30
Thermal	4	6	3	4	3	3	3	4
ACS	7	10	9	13	9	10	8	11
Power	26	35	16	23	19	21	21	29
Cabling	3	4	8	12	7	8	5	7
Propulsion	7	10	5	7	13	15	5	7
Telecom	-	-	4	6	6	7	4	6
CDS	4	6	4	6	6	7	4	6
Payload	28	-	31	-	11	-	29	-
								44

Propellant	Calculated		Added to overall budget,
			subsystem
Tank	10% of propellant weight		Tanks for compressed gas may be up to 50% of gas weight
Thrusters	0.35-0.4 kg for 0.44 to 4.4 N hydrazine units	5 W per thruster when firing	
Lines, Valves, & Fittings	Dependent on detailed spacecraft design		Examples 6.8 kg (HEAO) 7.5 kg (FLTSATCOM)

