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MAE 468/568 
Elements of Spacecraft Design

Ch. 6 – Introduction to Astrodynamics
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Class Agenda

• Orbital Mechanics
• Keplerian Orbits
• Satellite Equations of Motionq

– Circular
– Elliptical
– Parabolic
– Hyperbolic

• Hohmann Transfer
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• Interplanetary Trajectories
– Departure
– Arrival

• Earth-Moon System
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Astrodynamics

• Astrodynamics – study of a satellite’s 
trajectory/orbit
O bit th th h• Orbit – path through space

• Ephemeris – table listing its position as a 
function of time
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Orbital Mechanics

• 1800 B. C. 
– Inertial position of vernal equinox (Stonehenge)

• 350 B.C.
– Aristotle – wandering motion of planets – universe 

composed of 55 concentric spheres centered in Earth
– Each planet located in a sphere

• Aristarchus
– Proposed sun and stars fixed – planets rotated 

around them – not accepted

4

p
• 150 A.D.

– Ptolemy – elaborate Earth-centered theory
– Tables used for 1400 years
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Orbital Mechanics

• 1543
– Copernicus – sun-centered rotation

• 1610
G lil b ti i f d C i– Galileo – observations reinforced Copernicus

– Observed Jupiter’s moons orbiting Jupiter, not Earth
– Observed moonlike phases of sunlight on Venus –

not explained by Ptolemy
– Forced to recant by Catholic Church

• Tyco Brahe
– First accurate measurements of planet positions as a

5

– First accurate measurements of planet positions as a 
function of time

– Allowed Kepler to describe mathematically 
heliocentric motion of planets

Keplerian Orbits

• Kepler – described elliptical planetary 
orbits about Sun
N t th ti l l ti f• Newton – mathematical solution for 
system based on inverse-square 
gravitational force

• Kepler published his first two laws of 
planetary motion in 1609, third law in 1619p y ,

6



2/6/2008

4

Keplerian Orbits

• 1st Law – orbit of each planet is an ellipse, 
with Sun at one focus
2nd L li j i i l t d S• 2nd Law – line joining planet and Sun 
sweeps out equal areas in equal times

• 3rd Law – square of period of a planet is 
proportional to cube of mean distance 
from Sun

7

Satellite Equations of Motion

8
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Satellite Equations of Motion

• Newton’s law of universal gravitation

2r
MmGFg =

9

Satellite Equations of Motion

• Spacecraft motion governed by infinite network 
of attractions

• Dominated by one central body at a time
• Two-body assumptions

– Motion of spacecraft is governed by attraction to a 
single central body

– Mass of spacecraft is negligible compared to central 
body

– Bodies are spherically symmetric with masses 

10

p y y
concentrated at centers

– No forces act on bodies except for gravitational forces 
and centrifugal forces acting along center lines
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Satellite Equations of Motion

• If assumptions hold, conic sections are 
only possible paths for orbiting bodies, 
central body must be focus of the coniccentral body must be focus of the conic

• Assumptions nearly true
– Oblateness of Earth leads to small errors

11

Circular Orbits

• Centrifugal force on spacecraft

12

r
mVFc

2

=
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Circular Orbits

• For circular, steady-state motion
– Fg = Fc

2

• Solving for v

2

2

r
MmG

r
mV

=

MG
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Solving for v

r
MGV =

Circular Orbits

• Gravitational parameter, μ
– μ = MG

• Therefore

r
V μ
=

14

• μ is a property of central body – known for 
each of the planets 
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Astrodynamic Parameters

15

Circular Orbits

• Circular orbit period

ncecircumfere

π
3

2 rP

velocity
ncecircumfereP

=

=
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μ
π2P =
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General Solution

• Circular motion – special case of two-body 
motion
G l l ti l i• General solution conclusions
– Kepler’s laws of planetary motion are 

confirmed 
– Sum of potential energy and kinetic energy of 

orbiting body, per unit mass, is constant at all 
i t i th bit

17

points in the orbit

r
V με −=
2

2

General Solution

• Can be reduced to

μ

• Total energy of orbit depends on the semimajor 
axis (a) only

• Circular orbit, a=r, ε –

a2
με −=

18

, ,
• Elliptical orbit, a +, ε –
• Parabolic orbit, a=∞, ε=0
• Hyperbolic orbit, a -, ε +
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General Solution

• Additional energy must be added to a 
spacecraft to change an orbit from circular 

19

p g
to elliptical

• Energy must be removed to change from 
elliptical to circular

General Solution

20
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General Solution

• Useful form
μ

−=a

• Total angular momentum of orbiting body
– Constant

H X V

ε2
=a

21

– H = r X V
– H = rVcosγ

General Solution

• Eccentricity, e, defines shape of conic orbit
ce =

• e = 0 for circular orbit
• e <1 for elliptical orbit
• e = 1 for parabolic orbit

a
e

22

• e > 1 for hyperbolic orbit
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General Solution

• Specific energy and eccentricity are 
related

H 2

1

• General relation for velocity of orbiting 
body

a
He
μ

1−=

2

23

ar
V μμ

−=
2

General Solution

• Circle, a=r
r

V μ
=

• Ellipse, a>0

• Parabola, a=∞

ar
V μμ

−=
2

r
V μ2
=

24

• Hyperbola, a<0

r

ar
V μμ

+=
2
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General Solution

• Equations can define orbit and discover 
type given only r, V, and θ

1. Given r, V, calculate specific energy1. Given r, V, calculate specific energy
2. With specific energy, semimajor axis 

obtained
3. Given r, V, and γ, magnitude of specific 

momentum obtained
4. With specific momentum and semimajor 

25

axis, eccentricity obtained
5. From characteristics of eccentricities, orbit 

type can be determined

Elliptical Orbits

• Most common orbit
• All planets and most spacecraft move in
• Terms

– a = semimajor axis
– e = eccentricity
– ra = apoapsis radius
– rp = periapsis radius

• Periapsis – point of closest approach to central 
body (minimum radius)
A i i t f i di

26

• Apoapsis – point of maximum radius
• Line of apsides – apoapsis, periapsis, and 

center of mass line
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Elliptical Orbits

• Long axis – sum of apoapsis radius and 
periapsis radius

rr +

• Semimajor axis
– Defines size of orbit

Indicates energy of orbit

2
pa rr

a
+

=

2
pa rr

c
−

=
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– Indicates energy of orbit
– Called the mean distance 

• Distance between elliptical foci is 2c

2

Elliptical Orbits

• If
a
ce =

• Then

• Semiminor axis, b, of ellipse is related

pa

pa

rr
rr

e
+
−

=

28

a2 = b2 + c2



2/6/2008

15

Elliptical Orbits

• Given orbit defined by e and a

)1( 2 )1( er

29

)cos1(
)1( 2

θe
ear

+
−

= )cos1(
)1(
θe

er
r p

+
−

=

Elliptical Orbits

• Given a defined orbit, true anomaly can be 
calculated

ere
erp 1)1(

cos −
+

=θ
ere

ea 1)1(cos
2

−
+

=θ

30
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Elliptical Orbits

• Elliptical orbit through two given points

)1( er
r p +
=

)1( er
r p +

1
1 cos1 θe
r

+
=

2
2 cos1 θe
r p

+
=
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Parabolic Orbit

• Achieved by object falling from an infinite 
distance toward a central body
C t h b li bit• Comets approach parabolic orbits

32
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Parabolic Orbit

• Parabola – considered an ellipse with an infinite 
semimajor axis

• Arms become parallel as r approaches infinityArms become parallel as r approaches infinity 
and when e=1 and a = ∞

• Velocity

• Least energetic orbits
Mi i l it d d f ft t

r
V μ2
=

33

• Minimum velocity needed for a spacecraft to 
escape central body – escape velocity
– Greater spacecraft altitude – lower escape velocity

Hyperbolic Orbits

• Used for Earth departure on planetary 
flights

• Use for planetary arrival and targetingUse for planetary arrival and targeting
• Use for energetic gravity-assist maneuvers 

that change direction and magnitude of 
spacecraft velocity without propulsion

• At any radius, a spacecraft on a hyperbolic 
orbit has greater velocity than it would on

34

orbit has greater velocity than it would on 
parabolic orbit – all hyperbolas are escape 
trajectories
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Hyperbolic Orbits

• Hyperbolic trajectory velocity > parabolic 
trajectory velocity

• Parabolic velocity goes to zero for infinite radiusParabolic velocity goes to zero for infinite radius
• Hyperbolic – velocity is finite

• V∞ - velocity in excess of escape velocity –
hyperbolic excess velocity (VHE)
V i l it th t t b dd d t E th’

a
V μ

=∞

35

• VHE is velocity that must be added to Earth’s 
velocity to achieve departure on a planetary 
mission

Hyperbolic Orbits

• Traditional to express as C3
– C3 = VHE

2

C3 used to describe hyperbolic departure– C3 used to describe hyperbolic departure 
from Earth, not used to describe arrival at 
planet

36
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Hohmann Transfer

• Transfer between two nonintersecting orbits
• Employs an elliptical transfer orbit tangent to 

initial and final orbit at apsidesinitial and final orbit at apsides
• Design

– Set periapsis radius of transfer ellipse equal to radius 
of initial orbit

– Set apoapsis radius equal to radius of final orbit

37

Hohmann Transfer

• Two velocity increments required
– Changes initial velocity of spacecraft to velocity 

needed on transfer ellipse
ΔV V V• ΔV1 = Vpt - Vi

– Changes from velocity needed on transfer ellipse to 
velocity need on final orbit

• ΔV2 = Vat – Vf

• Transfer can be between circular or elliptical 
orbits
T f b f hi h t l bit

38

• Transfer can be from high to low orbit
• Efficiency – two velocity changes are made at 

points of tangency between trajectories
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Orbit Perturbations

• Assumed mass of central body spherically 
symmetrical and concentrated at geometric 
center

• Assumed gravitational attraction is only force 
acting on spacecraft

• Perturbations
– Oblateness of Earth
– Drag

39

Drag
– Attraction of sun
– Attraction of moon
– Solar radiation pressure

Earth’s Oblateness

• Earth not spherically symmetric
• Equatorial radius – 6378.14 km
• Polar radius – 6356.77 km
• Caused by axial rotation rate of Earth
• Two major perturbations

– Regression of nodes – orbit plane to precess 
gyroscopically (orbital rotation)

40

gyroscopically (orbital rotation)
– Rotation of apsides – rotation of periapsis
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Interplanetary Hohmann Transfers

41

Interplanetary Hohmann Transfers

• Departure ΔV
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Hyperbolic Excess Velocity and C3

• Hyperbolic excess velocity (VHE) - Vector 
difference between velocity of Earth with 
respect to sun and velocity required onrespect to sun and velocity required on 
transfer ellipse

• Hyperbolic excess velocity (V∞) on 
departure hyperbola
– Excess amount above the escape velocity

43

Hyperbolic Excess Velocity and C3

• VHE is negative for a Venus mission (or any 
mission to an inner planet) – indicates Earth’s 
orbital velocity must be reduced to enter the 
transfer ellipsetransfer ellipse

• VHE – measure of energy required from launch 
vehicle system

• Traditional to use C3 = VHE
2

– Major performance parameter agreed on between 
launch vehicle and planetary spacecraft

• C3 – comes from mission design; represents

44

C3 comes from mission design; represents 
minimum energy requirement needed to 
accomplish mission

• C3 – maximum energy launch vehicle can 
deliver carrying a spacecraft of a given weight
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V∞ at the Planet

• When spacecraft arrives at target planet, a 
velocity condition analogous to departure 
occurs

• Hyperbolic excess velocity on arrival at 
planet is called V∞ or VHP

• V∞ - vector difference between arrival 
velocity on transfer ellipse and orbital 
velocity of planet

45

velocity of planet
• V∞ - positive – indicating velocity must be 

reduced for capture

Establishing Planetary Orbit

• Frequently desired to place spacecraft in 
orbit about target planet
E t bli hi l t bit i• Establishing a planetary orbit requires 
simple orbit change 
– Velocity at periapsis of approach hyperbola

p
p r

VV μ22 += ∞
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– Velocity at periapsis of desired orbit
p

ar
V

p

p
μμ

−=
2'



2/6/2008

24

Establishing Planetary Orbit

• To put spacecraft into planetary orbit, velocity at 
periapsis must be reduced from Vp to V’p

• Substantial spacecraft energy and weight areSubstantial spacecraft energy and weight are 
usually required

• Capture velocity of spacecraft must be reduced 
to a value below rμ2

47

Motion of Earth-Moon System

• Earth-moon system is unique
• Two bodies are so close to the 

same mass that, had the moon 
been slightly larger, they would g y g , y
be the only known binary 
planet system

• Common misconception –
moon revolves around Earth

• Earth and moon revolve 
around a common center of 
mass – 4671 km from center of 

48

Earth and 379,729 km from 
center of moon

• One sidereal rotation about 
center takes 27.32 days
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Example 1

A satellite is placed in Earth orbit at an altitude of
700 km. The eccentricity of the orbit is 0. Find the
following:g

a)Orbit type
b)Velocity at the perigee
c)Velocity at the apogee
d)Orbit period

)If th t llit l d i tl i 600e)If the satellite were placed incorrectly in a 600
km orbit, what would the satellite’s velocity be?
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Example 2

A spacecraft has entered a circular orbit at 
Mars at an altitude of 35,000 km.  Design a 
Hohman transfer to lower the orbit to anHohman transfer to lower the orbit to an 
altitude of 1000 km.  Provide all velocities 
required (ΔV1, ΔV2) and the transfer time.
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