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MAE 468/568 
Elements of Spacecraft Design

Ch. 3 – Orbital Mechanics
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Class Agenda

• Orbital Mechanics

• Keplerian Orbits

• Satellite Equations of Motionq
– Circular

– Elliptical

– Parabolic

– Hyperbolic

• Hohmann Transfer
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• Interplanetary Trajectories
– Departure

– Arrival

• Earth-Moon System



2/21/2009

2

Orbital Mechanics

• 1800 B. C. 
– Inertial position of vernal equinox (Stonehenge)

• 350 B.C.
– Aristotle – wandering motion of planets – universe 

composed of 55 concentric spheres centered in Earth
– Each planet located in a sphere

• Aristarchus
– Proposed sun and stars fixed – planets rotated 

around them – not accepted
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p

• 150 A.D.
– Ptolemy – elaborate Earth-centered theory
– Tables used for 1400 years

Orbital Mechanics

• 1543
– Copernicus – sun-centered rotation

• 1610
G lil b ti i f d C i– Galileo – observations reinforced Copernicus

– Observed Jupiter’s moons orbiting Jupiter, not Earth
– Observed moonlike phases of sunlight on Venus –

not explained by Ptolemy
– Forced to recant by Catholic Church

• Tyco Brahe
– First accurate measurements of planet positions as a

4

– First accurate measurements of planet positions as a 
function of time

– Allowed Kepler to describe mathematically 
heliocentric motion of planets
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Keplerian Orbits

• Kepler – described elliptical planetary 
orbits about Sun

N t th ti l l ti f• Newton – mathematical solution for 
system based on inverse-square 
gravitational force

• Kepler published his first two laws of 
planetary motion in 1609, third law in 1619p y ,
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Keplerian Orbits

• 1st Law – orbit of each planet is an ellipse, 
with Sun at one focus

2nd L li j i i l t d S• 2nd Law – line joining planet and Sun 
sweeps out equal areas in equal times

• 3rd Law – square of period of a planet is 
proportional to cube of mean distance 
from Sun

6
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Satellite Equations of Motion

• Newton’s law of universal gravitation

2r

MmG
Fg 
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Satellite Equations of Motion

• Spacecraft motion governed by infinite network 
of attractions

• Dominated by one central body at a time
• Two-body assumptions

– Motion of spacecraft is governed by attraction to a 
single central body

– Mass of spacecraft is negligible compared to central 
body

– Bodies are spherically symmetric with masses 
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p y y
concentrated at centers

– No forces act on bodies except for gravitational forces 
and centrifugal forces acting along center lines
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Satellite Equations of Motion

• If assumptions hold, conic sections are 
only possible paths for orbiting bodies, 
central body must be focus of the coniccentral body must be focus of the conic

• Assumptions nearly true
– Oblateness of Earth leads to small errors

9

Circular Orbits

• Centrifugal force on spacecraft

10

r

mV
Fc

2





2/21/2009

6

Circular Orbits

• For circular, steady-state motion
– Fg = Fc

2

• Solving for v

2
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

MG

11

Solving for v

r

MG
V 

Circular Orbits

• Gravitational parameter, 
–  = MG

• Therefore

r
V




12

•  is a property of central body – known for 
each of the planets 
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Orbital Mechanics Data

Appendix B.5, pg. 592
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Circular Orbits

• Circular orbit period

ncecircumfere


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
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General Solution

• Circular motion – special case of two-body 
motion

G l l ti l i• General solution conclusions
– Kepler’s laws of planetary motion are 

confirmed 

– Sum of potential energy and kinetic energy of 
orbiting body, per unit mass, is constant at all 

i t i th bit

15

points in the orbit

r

V  
2

2

General Solution

• Can be reduced to



• Total energy of orbit depends on the semimajor 
axis (a) only

• Circular orbit, a=r,  –

a2

 
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, ,
• Elliptical orbit, a +,  –
• Parabolic orbit, a=∞, =0
• Hyperbolic orbit, a -,  +
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General Solution

• Additional energy must be added to a 
spacecraft to change an orbit from circular 

17

p g
to elliptical

• Energy must be removed to change from 
elliptical to circular

General Solution

18
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General Solution

• Useful form


a

• Total angular momentum of orbiting body
– Constant

H X V

2
a

19

– H = r X V

– H = rVcos

General Solution

• Eccentricity, e, defines shape of conic orbit

c
e 

• e = 0 for circular orbit

• e <1 for elliptical orbit

• e = 1 for parabolic orbit

a
e

20

• e > 1 for hyperbolic orbit
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General Solution

• Specific energy and eccentricity are 
related

H 2

1

• General relation for velocity of orbiting 
body

a

H
e


1

2
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ar
V



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General Solution

• Circle, a=r

r
V




• Ellipse, a>0

• Parabola, a=∞

ar
V




2

r
V

2

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• Hyperbola, a<0

r

ar
V



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General Solution

• Equations can define orbit and discover 
type given only r, V, and 

1. Given r, V, calculate specific energy1. Given r, V, calculate specific energy
2. With specific energy, semimajor axis 

obtained
3. Given r, V, and , magnitude of specific 

momentum obtained
4. With specific momentum and semimajor 

23

axis, eccentricity obtained
5. From characteristics of eccentricities, orbit 

type can be determined

Elliptical Orbits

• Most common orbit
• All planets and most spacecraft move in
• Terms

– a = semimajor axis
– e = eccentricity
– ra = apoapsis radius
– rp = periapsis radius

• Periapsis – point of closest approach to central 
body (minimum radius)
A i i t f i di

24

• Apoapsis – point of maximum radius
• Line of apsides – apoapsis, periapsis, and 

center of mass line
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Elliptical Orbits

• Long axis – sum of apoapsis radius and 
periapsis radius

rr 

• Semimajor axis
– Defines size of orbit

Indicates energy of orbit

2
pa rr

a




2
pa rr

c




25

– Indicates energy of orbit

– Called the mean distance 

• Distance between elliptical foci is 2c

2

Elliptical Orbits

• If
a

c
e 

• Then

• Semiminor axis, b, of ellipse is related

pa

pa

rr

rr
e





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a2 = b2 + c2
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Elliptical Orbits

• Given orbit defined by e and a

)1( 2 )1( er 
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Elliptical Orbits

• Given a defined orbit, true anomaly can be 
calculated

ere

erp 1)1(
cos 


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Elliptical Orbits

• Elliptical orbit through two given points

)1( er
r p 


)1( er
r p 
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Parabolic Orbit

• Achieved by object falling from an infinite 
distance toward a central body

C t h b li bit• Comets approach parabolic orbits

30
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Parabolic Orbit

• Parabola – considered an ellipse with an infinite 
semimajor axis

• Arms become parallel as r approaches infinityArms become parallel as r approaches infinity 
and when e=1 and a = ∞

• Velocity

• Least energetic orbits

Mi i l it d d f ft t

r
V

2

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• Minimum velocity needed for a spacecraft to 
escape central body – escape velocity
– Greater spacecraft altitude – lower escape velocity

Hyperbolic Orbits

• Used for Earth departure on planetary 
flights

• Use for planetary arrival and targetingUse for planetary arrival and targeting
• Use for energetic gravity-assist maneuvers 

that change direction and magnitude of 
spacecraft velocity without propulsion

• At any radius, a spacecraft on a hyperbolic 
orbit has greater velocity than it would on

32

orbit has greater velocity than it would on 
parabolic orbit – all hyperbolas are escape 
trajectories
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Hyperbolic Orbits

• Hyperbolic trajectory velocity > parabolic 
trajectory velocity

• Parabolic velocity goes to zero for infinite radiusParabolic velocity goes to zero for infinite radius

• Hyperbolic – velocity is finite

• V∞ - velocity in excess of escape velocity –
hyperbolic excess velocity (VHE)

V i l it th t t b dd d t E th’

a
V




33

• VHE is velocity that must be added to Earth’s 
velocity to achieve departure on a planetary 
mission

Hyperbolic Orbits

• Traditional to express as C3
– C3 = VHE

2

C3 used to describe hyperbolic departure– C3 used to describe hyperbolic departure 
from Earth, not used to describe arrival at 
planet

34
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Hohmann Transfer

• Transfer between two nonintersecting orbits

• Employs an elliptical transfer orbit tangent to 
initial and final orbit at apsidesinitial and final orbit at apsides

• Design
– Set periapsis radius of transfer ellipse equal to radius 

of initial orbit

– Set apoapsis radius equal to radius of final orbit

35

Hohmann Transfer

• Two velocity increments required
– Changes initial velocity of spacecraft to velocity 

needed on transfer ellipse
V V V• V1 = Vpt - Vi

– Changes from velocity needed on transfer ellipse to 
velocity need on final orbit

• V2 = Vat – Vf

• Transfer can be between circular or elliptical 
orbits
T f b f hi h t l bit

36

• Transfer can be from high to low orbit
• Efficiency – two velocity changes are made at 

points of tangency between trajectories
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Orbit Perturbations

• Assumed mass of central body spherically 
symmetrical and concentrated at geometric 
center

• Assumed gravitational attraction is only force 
acting on spacecraft

• Perturbations
– Oblateness of Earth

– Drag

37

Drag

– Attraction of sun

– Attraction of moon

– Solar radiation pressure

Earth’s Oblateness

• Earth not spherically symmetric

• Equatorial radius – 6378.14 km

• Polar radius – 6356.77 km

• Caused by axial rotation rate of Earth

• Two major perturbations
– Regression of nodes – orbit plane to precess 

gyroscopically (orbital rotation)

38

gyroscopically (orbital rotation)

– Rotation of apsides – rotation of periapsis
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Interplanetary Hohmann Transfers

39

Interplanetary Hohmann Transfers

• Departure V
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Hyperbolic Excess Velocity and C3

• Hyperbolic excess velocity (VHE) - Vector 
difference between velocity of Earth with 
respect to sun and velocity required onrespect to sun and velocity required on 
transfer ellipse

• Hyperbolic excess velocity (V∞) on 
departure hyperbola
– Excess amount above the escape velocity

41

Hyperbolic Excess Velocity and C3

• VHE is negative for a Venus mission (or any 
mission to an inner planet) – indicates Earth’s 
orbital velocity must be reduced to enter the 
transfer ellipsetransfer ellipse

• VHE – measure of energy required from launch 
vehicle system

• Traditional to use C3 = VHE
2

– Major performance parameter agreed on between 
launch vehicle and planetary spacecraft

• C3 – comes from mission design; represents

42

C3 comes from mission design; represents 
minimum energy requirement needed to 
accomplish mission

• C3 – maximum energy launch vehicle can 
deliver carrying a spacecraft of a given weight



2/21/2009

22

V∞ at the Planet

• When spacecraft arrives at target planet, a 
velocity condition analogous to departure 
occurs

• Hyperbolic excess velocity on arrival at 
planet is called V∞ or VHP

• V∞ - vector difference between arrival 
velocity on transfer ellipse and orbital 
velocity of planet

43

velocity of planet
• V∞ - positive – indicating velocity must be 

reduced for capture

Establishing Planetary Orbit

• Frequently desired to place spacecraft in 
orbit about target planet

E t bli hi l t bit i• Establishing a planetary orbit requires 
simple orbit change 
– Velocity at periapsis of approach hyperbola

p
p r

VV
22  

44

– Velocity at periapsis of desired orbit
p

ar
V

p

p



2'
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Establishing Planetary Orbit

• To put spacecraft into planetary orbit, velocity at 
periapsis must be reduced from Vp to V’p

• Substantial spacecraft energy and weight areSubstantial spacecraft energy and weight are 
usually required

• Capture velocity of spacecraft must be reduced 
to a value below r2
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Motion of Earth-Moon System

• Earth-moon system is unique

• Two bodies are so close to the 
same mass that, had the moon 
been slightly larger, they would g y g , y
be the only known binary 
planet system

• Common misconception –
moon revolves around Earth

• Earth and moon revolve 
around a common center of 
mass – 4671 km from center of 

46

Earth and 379,729 km from 
center of moon

• One sidereal rotation about 
center takes 27.32 days


