

Ares V Overview

presented at

Ares V Astronomy Workshop 26 April 2008

Phil Sumrall

Advanced Planning Manager Ares Projects Office Marshall Space Flight Center, NASA

Introduction

- ◆ The NASA Ares Projects Office is developing the launch vehicles to move the Nation beyond low earth orbit
- ◆ Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to place cargo on the Moon
- ◆ This is a work-in-progress and we are presenting a "snap-shot" of the ongoing effort
- ◆ The Ares V vehicle will be considered a national asset, and we look forward to opening a dialogue for potential applications with the astronomy community
- Our goal today is to introduce you to the Ares V vehicle
 - Mission and Vehicle Overview
 - Performance Description

Ares V Mission and Vehicle Overview

Building on a Foundation of Proven Technologies – Launch Vehicle Comparisons –

Crew

Lunar

Lander

S-IVB

(1 J-2 Engine)

(5 J-2 Engines) 453,592 kg

(5 F-1 Engines)

1,769,010 kg

(3.9M lbm) LOX/RP-1

108,862 kg

(240k lbm)

LOX/LH₂

(1M lbm)

LOX/LH₂

S-II

S-IC

Space Shuttle

Height: 56.1 m (184.2 ft) Gross Liftoff Mass: 2,041,166 kg (4.5M lbm) Payload Capability:

25 mT (55k lbm) to Low Earth Orbit (LEO)

Orion

Ares V

Altair

Earth Departure

Core Stage

1,435,526 kg

2 5-Seament

(3.2M lbm)

LOX/LH₂

RSRBs

(5 RS-68 Engines)

Stage (EDS) (1 J–2X Engine) 234,486 kg (517k lbm)

LOX/LH₂

Height: 109.9 m (360.5 ft)
Gross Liftoff Mass:
3,374,875 kg (7.4M lbm)
Payload Capability:
63.6 mT (140.2k lbm) to TLI (with Ares I)
55.9 mT (123K lbm) to Direct TLI
~143.4 mT (316k lbm) to LEO

Saturn V

Height: 110.9 m (364 ft) Gross Liftoff Mass: 2,948,350 kg (6.5M lbm) Payload Capability: 45 mT (99k lbm) to TLI 119 mT (262k lbm) to LEO

DAC 2 TR 5

Constellation Lunar Sortie Mission

- 1.5 Vehicle Launch Solution -

- Current Ares V concept analyses are based on 67mt payload to TLI requirement (Lunar Lander + Crew Exploration Vehicle)
 - Orbital Insertion at 130 nmi and 29.0° inclination.
 - Orbital decay during maximum 4-day loiter period
 - Trans Lunar Injection (TLI) burn of 3175 m/s from 100 nmi

Ares V Ascent Profile for 1.5 Launch DRM - Vehicle 51.0.39 -

Core Main Engine Cutoff and

Core Stage

5 x RS-68 Engines 414.2 sec. Isp, 106.0% Power Lead 33.0 ft (10.0 m) Diameter

EDS

1 x J-2X Engine 448.0 sec. Isp,294 lbf Thrust 27.5 ft (10.0 m) Diameter

Shroud Separation

Time = 304.2 sec Altitude = 123.5 km (405.1 kft) Heating Rate = 1.136 kjoule.m2-sec (0.1 BTU/ft²-sec)

EDS Engine Cutoff

Time = 802.3 sec Sub-Orbital Burn Duration = 472.4 sec Injected Weight = 167,015 kg (372,615 lbm)Orbital Altitude = 240.8 km (130 nmi) circ @ 29.0°

Separation; EDS Ignition **EDS TLI Burn** Time = 329.0 sec Orbital Altitude = 185 km (100 nmi) Altitude = 140.8 km (462.0 kft) circ @ 29.0° Mach = 8.79Burn Duration = 390.4 sec **Maximum Dynamic Pressure** Time = 79.7 sec Lunar Altitude = 13.9 km (45.7 kft)Lander/CEV Mach = 1.66Dynamic Pressure = 29.8 kN/m2 (623 psf) Separation -**SRB Separation** Time = 125.9 sec Altitude = 37.9 km (124.4 kft) Mach = 3.77Dynamic Pressure = 3.97 kN/m2 (83 psf) **EDS Disposal** CEV Rendez. & Dock w/EDS Liftoff Time - Assumed Up to 4 Days Time = +1 sec Orbital Altitude Assumed to Degrade to 185 km (100 nmi)

Core Impact in

Atlantic Ocean

Launch

Thrust-to-Weight Ratio = 1.34

GLOW = 3,374,875 kg (7,440,326 lbm)

Splashdown

Ares V Elements

Aluminum-Lithium (Al-Li) tanks

Earth Departure Stage Current Design Concept

- Expanded View -

Orbit prior to TLI Burn
• EDS provide 1.5 kW of power to Altair from launch to TLI

Maintains Orion/Altair/EDS stack attitude in Low Earth

National Aeronautics and Space Administration

Core Stage Current Design Concept

- Expanded View -

Ares I/Ares V Connection

DAC 2 TR 5

National Aeronautics and Space Administration

Notional Instrument Unit

The Ares I Upper Stage Avionics will provide:

- Guidance, Navigation, and Control (GN&C)
- Command and data handling
- Pre-flight checkout
- Basic design to be extended to Ares V

Instrument Unit Avionics

Aft Skirt Avionics
Interstage Avionics

Thrust Cone Avionics

Avionics Mass: 1,114 kg (2,456 lbm)

Electrical Power: 5,145 Watts

Earth Departure Stage J-2X Engine

Turbomachinery

• Based on J-2S MK-29 design

Gas Generator

 Based on RS–68 design

Engine Controller

 Based directly on RS–68 design and software architecture

Regeneratively Cooled Nozzle Section

Based on long history of RS–27 success

Mass: 2,472 kg (5,450 lbm)

Thrust: 1.3M N (294k lbm) (vac)

Isp: 448 sec (vac)

Height: 4.7 m (185 in)

Diameter: 3.0 m (120 in)

Flexible Inlet Ducts

• Based on J-2 & J-2S ducts

Open-Loop Pneumatic Control

• Similar to J-2

HIP-bonded MCC

 Based on RS–68 demonstrated technology

Nozzle Extension

Based on RL10–B2

Pratt & Whitney Rocketdyne

National Aeronautics and Space Administration 7434

Ares I Solid Rocket Booster (SRB)

Core Stage Upgraded USAF RS-68 Engine

* Redesigned turbine

nozzles to increase maximum power level by ≈ 2%

Redesigned turbine seals to significantly reduce helium usage for pre-launch

Other RS-68A upgrades or changes that may be included:

- · Bearing material change
- New Gas Generator igniter design
- Improved Oxidizer Turbo Pump temp sensor
- · Improved hot gas sensor
- 2nd stage Fuel Turbo Pump blisk crack mitigation
- Cavitation suppression
- ECU parts upgrade

Increased duration capability ablative nozzle

Shroud Shape Trade Study- Initial Trade Space -

All shroud options have 9.7m barrel height to accommodate current Lunar Lander configuration.

Ares V Summary Schedule

Ares V Performance Description

Ares V 51.0.39 Reference Baseline

71.1'

73.8'

360.5'

215.6'

33.0'

EDS Stage 4 day LEO loiter

Propellants LOX/LH2 Usable Propellant 516,953 lbm Propellant Offload 0.0 % Stage liftoff pmf 0.8808 Launch Dry Mass 50,144 lbm TLI Burnout Mass 55,287 lbm Suborbital Burn Propellant 310,000 lbm Pre-TLI Jettison Mass 6,895 lbm LEO FPR 7.804 lbm # Engines / Type 1 / J-2X Engine Thrust (100%) 294,000 lbf / 238,000 lbf @ Vac

Engine Isp (100%) 448.0 sec / 449.0 sec @ Vac Mission Power Level 100.0 % / 81.0 %

Suborbital Burn Time 472.4 sec TLI Burn Time 390.4 sec

Delivery Orbit.5 Launch TLI

LEO Deliver 1/30 nmi circular @ 29.0° TLI Payload from 100 nm1i40,177 lbm (63.6 t)

CEV Mass44,500 lbm (20.2 t)

LSAM Mass95,677 lbm (43.4 t)

Insertion Altitude31.6 nmi

T/W @ Liftoff + 1 setc.34

Max Dynamic Pressure23 psf

Max q's Ascent Bura.90 q

T/W @ SRB Separation.32

T/W Second Stage.43

T/W @ TLI Ignition.58

Vehicle Concept Characteristics

GLOW 7,440,326 lbf

Payload Envelope L x D 25.3 ft x 30.0 ft Shroud Jettison Mass 19.388 lbm

Booster (each)

Propellants PBAN (262-07 Trace) Overboard Propellant 1.390.548 lbm Stage pmf 0.8628 Burnout Mass 221.175 lbm # Boosters / Type 2 / 5 Segment SRM Booster Thrust (@ 1.0 sec) 3,571,974 lbf @ Vac Booster Isp (@ 1.0 sec) 272.8 sec @ Vac Burn Time 125.9 sec

Core Stage

Propellants LOX/LH2 Usable Propellant 3,164,794 lbm Propellant Offload 0.0 % Stage pmf 0.9052 Drv Mass 296.952 lbm Burnout Mass 331,411 lbm # Engines / Type 5 / RS-68

Engine Isp (108%) 360.8 sec @ SL Mission Power Level 108.0 %

Core Burn Time 328.9 sec

Engine Thrust (108%) 702,055 lbf @ SL 797,000 lbf @ Vac 414.2 sec @ Vac

Interstage Core/EDS Drv Mass 18.672 lbm

179.2'

Current Ares V Shroud Concept

Preliminary Aero-acoustic Analysis - Transonic and Max-Q Acoustics -

- Predicted ascent maxacoustic levels
- Conceptual design based on acoustic blanket thicknesses used on Cassini mission

Table I. Estimated max Overall Fluctuating Pressure Level (OAFPL) on Shroud external regions

Zone	I	lla	IIb	Illa	IIIb
Criteria for Max OAFPL	Attached Turbulent Boundary Layer	Weak Transonic Shock	Attached Turbulent Boundary Layer	Strong Transonic Shock & Separation	Weak Transonic Shock
Expected Mach # for max OAFPL	1.65	0.93	1.65	0.85	0.85
Q (psf)	707	520	707	475	475
Crms	0.007	0.07	0.007	0.12	0.035
OAFPL (dB)	142	159	142	163	152

Preliminary Aerothermal Analysis Mission Maximum Tomporature

- Mission Maximum Temperature -

Preliminary Structural Analysis

7434 22

Ares V LEO Performance

Ares V Payload vs. Altitude & Inclination

Ares V Escape Performance

Payload vs. Trip Times for Representative Missions - Constellation POD Shroud -

Neptune

 $C_3 = 136$

30.6 yrs

Notional Ares V Shroud for Other Missions

Ares V LEO Performance - Extended Shroud -

Ares V Payload vs. Altitude & Inclination

Circular Orbital Altitude (km)

Ares V Escape Performance - Extended Shroud -

Ares V Performance for Selected Missions

- 1) Sun-Earth L2 Mission
 - Target C3 energy of -0.7 km²/s² @ 29.0 degrees
- 2) Geosynchronous Transfer Orbit (GTO)
 - Final orbit: 185 km x 35,786 km @ 27 degrees
 - Intermediate orbit: LEO insertion at 185 km circ. @ 28.5 degrees
- 3) Geosynchronous Earth Orbit (GEO)
 - Final orbit: 35,786 km circular @ 0 degrees
 - Intermediate orbit: LEO insertion at 185 km circ. @ 28.5 degrees
 - Note: assessed as single burn; no boil-off assumed between burns; 500 lb_m knock-down included for additional engine restart
- 4) Lunar Outpost Cargo (Direct TLI), Reference
 - Target C3 energy of -1.8 km²/s² @ 29.0 degrees

		Constellation POD Shroud		Extended Shroud	
Mission Profile	Target	Payload (lb _m)	Payload (t)	Payload (lb _m)	Payload (t)
1) Sun-Earth L2	C3 of -0.7 km ² / s ²	123,100	55.8	121,600	55.1
2) GTO Injection	Transfer DV 8,200 ft/s	155,100*	70.3*	153,700*	69.7*
3) GEO	Transfer DV 14,100 ft/s	79,700	36.2	78,700	35.7
4) Cargo Lunar Outpost (TLI Dir்சிர் செங்கொ சே impa	C3 of -1.8 km²/ cts from structur a Þir	ncreases due to l	arger 56 gloads	has not been ass	esse ^{56.1}

National Aeronautics and Space Administration 7434

Developing Ares V Launch System Mission Planner's Guide

- Mission Planner Guide Planned for Draft Release in Summer 2008
 - Interface Definitions
 - Fairings, Adapters...
 - Mission Performance
 - Development Timelines
 - Concept of Operations
 - Potential Vehicle Evolution and Enhancements
 - Need Past Astronomy Mission Data

Summary

- ♦ The focus of design efforts in the near future will be on the primary Lunar mission.
- We are currently just beginning to integrate the design functions from the various centers for this mission.
- We appreciate all thoughts and ideas for different ways to us the Ares V platform

Backup

Ground Rules and Assumptions

- ◆ All trajectories analyzed using POST3D (Program to Optimize Simulated Trajectories - 3 Dimensional)
- ◆ Flight performance reserve is based on the Ares V LEO mission, and is held constant for all cases
- No gravity assists
- ◆ Interplanetary trip times are based on Hohmann transfers (limited to ~24 years max.)
- Payload mass estimates are separated spacecraft mass, and include payload adapter and any mission peculiar hardware (if required)
- ◆ Ares V vehicle based on configuration 51.00.39, but w/ Upper Stage burnout mass from configuration 51.00.34 (propellant tanks not resized for high C3 missions)

Ground Rules and Assumptions (Cont'd)

- For cases incorporating a kick stage:
 - Ares I and Ares V employ 2-engine Centaur from Atlas V
 - Additional adapter mass of 6,400 lbm assumed
 - No adjustments to aerodynamic data
- Propellant mass for:
 - Åres V LEO missions: held constant at 310,000 lbm
 - Ares I and V C3 missions and Ares I LEO missions: maximum propellant load
- No Upper Stage propellant off-loading for Ares I and Ares V C3 cases
- Transfer orbit to Sun-Earth L2 point is a direct transfer w/ C3 = -0.7 km2/s2
 - Payload can be increased by using a lunar swingby maneuver
- ♦ All cases targeting a C3 are of longer duration than the J-2X constraint of 500 seconds

Sun-Earth Lagrange Points

- The figure shows the Lagrange points associated with the Sun-Earth system
- L2 roughly 1.5 million kilometers beyond Earth
- L1, L2, and L3 are unstable, so any spacecraft placed there must do stationkeeping
- Typically insert the spacecraft into a halo orbit about the Lagrange point, such as shown about L2.

Shapes Delivered to MSFC (2/25/08) to Support **Upcoming Wind Tunnel Test**

Ares V - Payload Fairing Studies Payload Fairing Study - 1 (PFS-1), PFS-3, PFS-8 wind tunnel shapes

10m diameter

24.Jan.08 lwt3